Search results for "External magnetic field"

showing 3 items of 3 documents

Kinetics of doublet formation in bicomponent magnetic suspensions: The role of the magnetic permeability anisotropy

2017

Micron-sized particles (microbeads) dispersed in a suspension of magnetic nanoparticles, i.e., ferrofluids, can be assembled into different types of structures upon application of an externalmagnetic field. This paper is devoted to theoretical modeling of a relative motion of a pair of microbeads (either soft ferromagnetic or diamagnetic) in the ferrofluid under the action of applied uniform magnetic field which induces magnetic moments in the microbeads making them attracting to each other. The model is based on a point-dipole approximation for the magnetic interactions between microbeads mediated by the ferrofluid; however, the ferrofluid is considered to possess an anisotropic magnetic p…

MAGNETIC PERMEABILITYPOINT-DIPOLE APPROXIMATIONFerrofluidMaterials scienceMagnetism02 engineering and technology01 natural sciencesMAGNETISMPhysics::Fluid DynamicsTHEORETICAL MODELINGUNIFORM MAGNETIC FIELDS0103 physical sciencesNANOPARTICLES[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]PERMEABILITY ANISOTROPY010306 general physicsSUSPENSIONS (COMPONENTS)ANISOTROPYEXTERNAL MAGNETIC FIELDMagnetic momentMICRON-SIZED PARTICLESMAGNETIC FIELDSMAGNETIC FLUIDS021001 nanoscience & nanotechnologyMagnetic fieldMAGNETIC INTERACTIONSMagnetic anisotropySUSPENSIONS (FLUIDS)FerromagnetismMAGNETIC MOMENTSChemical physicsMAGNETIC NANO-PARTICLESNANOMAGNETICSMAGNETIC ANISOTROPYDiamagnetismMagnetic nanoparticles0210 nano-technology[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]ANISOTROPIC MEDIA
researchProduct

Superconducting Solenoid System with Adjustable Shielding Factor for Precision Measurements of the Properties of the Antiproton

2019

Physical review applied 12(4), 044012 (2019). doi:10.1103/PhysRevApplied.12.044012

MAGNETIC-MOMENTSpeichertechnik - Abteilung BlaumPenning trapNuclear engineeringGeneral Physics and Astronomy02 engineering and technologyPROTON53001 natural sciencesNoise (electronics)Physics AppliedTrap (computing)External magnetic field0103 physical sciencesPENNING TRAP TECHNIQUEFACILITYddc:530Physics::Atomic PhysicsSolenoidsDetectors and Experimental TechniquesNuclear Experiment010306 general physicsSuperconductivityPhysicsScience & TechnologyLarge Hadron ColliderPhysics021001 nanoscience & nanotechnologyMagnetic fieldElectromagnetic coilAntiprotonPhysical SciencesMagnetic momentsElectromagnetic shieldingPhysics::Accelerator PhysicsCharge-to-mass ratiosDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikATOMIC MASSPARTICLE0210 nano-technologyMASS MEASUREMENTSPhysical Review Applied
researchProduct

Analysis of multipactor RF breakdown in a waveguide containing a transversely magnetized ferrite

2016

In this paper, the multipactor RF breakdown in a parallel-plate waveguide partially filled with a ferrite slab magnetized normal to the metallic plates is studied. An external magnetic field is applied along the vertical direction between the plates in order to magnetize the ferrite. Numerical simulations using an in-house 3-D code are carried out to obtain the multipactor RF voltage threshold in this kind of structures. The presented results show that the multipactor RF voltage threshold at certain frequencies becomes considerably lower than for the corresponding classical metallic parallel-plate waveguide with the same vacuum gap

Materials scienceSaturation magnetizationElectromagnetic waveguidesPhysics::Instrumentation and DetectorsIn-house 3D codeTransversely magnetized ferrite01 natural sciencesVacuum gap010305 fluids & plasmasExternal magnetic fieldOptics0103 physical sciencesVertical directionRadio frequencyTEORIA DE LA SEÑAL Y COMUNICACIONESParallel-plate waveguideElectronic engineeringNumerical simulationsElectrical and Electronic EngineeringMagnetic anisotropyElectric breakdownMultipactor RF breakdown analysis010302 applied physicsbusiness.industryParallel plate waveguidesFerrite slabRF breakdownMicrowave switchesVacuum gapElectronic Optical and Magnetic MaterialsMagnetic fieldMultipactor RF voltage thresholdMagnetic fieldMetallic platesMagnetic fieldsSlabFerrite (magnet)Ferrite waveguidesFerrite devicesMultipactor effectbusinessVoltageNumerical analysis
researchProduct